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Processes of arbitrary order in quantum electrodynamics with 
a pair-creating external field 
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Tomsk, USSR 

Received 23 February 1977, in final form 23 May 1977 

Abstract. Dyson’s perturbation theory analogue for quantum electrodynamical processes 
with arbitrary initial and final states in an external field creating pairs has been discussed. 
The interaction with the field is taken into account exactly. The possibility of using 
Feynman diagrams, together with modified correspondence rules, for the representation 
of the above mentioned processes has been demonstrated. 

1. Introduction 

The study of electrodynamical processes in an external field requires the exact evalu- 
ation of the field to all orders of the perturbation expansion. There are a number of 
approaches to the solution of this problem (Feynman 1949, Schwinger 1954, Furry 
195 1). However, a consistent treatment of perturbation theory and diagrammatic 
techniques for arbitrary processes has been carried out only for fields which do not 
create pairs. 

The difficulties associated with pair creation manifest themselves most clearly, for 
instance, in the Furry (195 1) approach: here the creation and annihilation operators 
for particles and antiparticles should be formed using solutions of the Dirac equation 
in the external field. For pair-creating fields, however, no solutions exist which could 
be attributed to particles or antiparticles for every time. These difficulties do not seem 
to be of major importance and should be thought of as evidence for the fact that no 
consistent one-particle interpretation of the Dirac equation is possible for external 
fields of arbitrary form. Nevertheless, exact solutions and Green functions of the 
Dirac equation undoubtedly contain all the information necessary for summing up the 
perturbation series with respect to the external field. This has been shown (e.g. by 
Feynman 1949, Schwinger 1954, Nikishov 1972, Grib et ul 1972, Bagrov et ul 1975) 
for processes of zeroth order with respect to the electron-photon interaction and for 
fields which cease to create pairs when t + fa). 

In the present paper we will consider an analogue of the Dyson perturbation 
theory for processes with arbitrary initial and final states for quantum electrodynamics 
in an external field which creates pairs. The interaction with the external field will be 
evaluated exactly. It will be shown that Feynman diagrams, with modified cor- 
respondence rules, may be used for the description of these processes. 
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2. General formulae for the transition probability amplitudes 

Consider the quantum electrodynamical Hamiltonian in an external electromagnetic 
field. The sum of the Hamiltonians of the electron-positron field in an external 
electromagnetic field with potentials d and the free electromagnetic field %rad is 
chosen as the zeroth Hamiltonian Xo(t): 

J 

Xo(t)= : $(x)(-iyV + ed(x)+ m)$(x): dx + %rad, J ( x )  = dW(x)yW. 5 
Now we define the evolution operator of the electron-positron field in the external 

electromagnetic field: 

VI&, t’)lt+ = 1, 

and construct, with its aid, the field operators in the ‘interaction’ picture: 

Then provided the operator Uo(t, t’) is known the total evolution operator V(t, t’) for 
the Hamiltonian (1) may be presented in a form for which the expansion in powers of 
the charge does not demand any expansion in powers of the external field: 

When considering processes in an external field it is necessary to choose the initial 
and final states at the moments of time r1 and t Z ,  respectively. In accordance with 
quantum mechanics one may, in principle, choose an arbitrary state at one given 
moment in time and consider the probability of transition to another arbitrary state at 
another given moment in time. The choice of the initial and final states should be a 
matter of physical consideration (see appendix 1). In this paper we will deal with the 
formal scheme suitable for a rather wide class of initial and final states. 

We now write down some general assumptions, related to the construction of these 
states, which we use explicitly. 

We suppose that the sets of creation and annihilation operators for the charged 
particles {a:, an} and antiparticles {PA, Pn}  at the moment of time tl are given (and 

There is the vacuum vector (O)i, for these operators (Vn, #n(O)in = PnlO)in = 0) in the 

The set of operators {a:, a,,, PA, Pn}  is generated by the complete and orthonormal 

[ a n ,  aA*I+ = [ P n ,  P A , ] +  = Sn,n*,  [ a n ,  a n , ] +  = [ P n ,  @,$I+ = 0). 

original Hilbert space, where the Hamiltonian X ( t )  is defined. 

set of spinors {&,(x)}, where a suffix + denotes a particle and - an antiparticle: 

CL(X)=C n ( a n  + d n ( X ) + P :  - d n ( X ) ) *  (4) 

Here $(x) is the spinor field operator in the Schrodinger picture. 
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Similarly the sets of operators of the charged particles {a:, a,}  and antiparticles 
{b;, b,}([a,, ah , ] ,  = [b,, b k f ] +  = a,,,,, [a,, a,,]+ = [b,,,, 6,,]+ = 0) at the moment of 
time r2 are given, there is the vacuum vector 10)out(Vm, Um1O)out = bm1O)out= O), opera- 
tors {a,,,, a,, b:, b,} are generated by the spinors {*c$,(x)} in accordance with the 
expansion: 

t 

Conditions for the orthonormality and completeness of the set of spinors {*4n(x)} 
have the following form: 

( * 4 m ,  4,) = &n,, 

c (+4n(x) + 4 ~ ( x ' ) + - 4 f l ( x ) - 4 : ( X ) ) =  -A-'). 

( * 4 n ,  T#d> = 0,  (4, $1 = j 4t(X>$(X> dx, 

(6) 

n 

Similar conditions can be written for the set of spinors {*4, (x)}. 
The requirement for the existence of the vacuum vectors imposes 

certain restrictions on the choice of sets {*&(x)} and {'4,(x)}. These restrictions are 
discussed in appendix 1. 

Thus the probability amplitude for an arbitrary process with initial and final states 
containing given numbers of charged particles, antiparticles and photons can be 
written in the form: 

and 

bf,+f= .ut(dla'm. . . 6 s .  . . CrA . . S(t2, tl)cLv. . p: . . . ff: . . . /())in, (7) 
where 

i m  = ~ i ' ( t 2 . 9  t l ) a m ~ O ( t 2 ,  t l ) ,  b:, = Ut1(t2, ti)bmUo(t2, ti), 
(8) Dout = ~ ; ' l ( t ~ ,  tl)lO)out, 

and c z ,  cKh are the photon creation and annihilation operators. 
In the matrix elements (7) the vacuum vectors and the creation and annihilation 

operators which are placed on the left and on the right of the S matrix are different 
from each other (see appendix 3). It is this that distinguishes the matrix elements (7) 
from the case when either no external field is involved or the latter does not produce 
pairs, and initial and final states are chosen in a special way. 

That is why a result cannot be obtained using conventional computational tech- 
niques, based on the reduction of the S matrix to normal form relative to one vacuum. 
The main idea which allows us to obtain an analogue of conventional perturbation 
theory in quantum electrodynamics is to express any operators of the spinor field, and 
specifically the S matrix, only through creation (ii', d') and annihilation (a, p )  opera- 
tors, so that all the Gt ,  6' can be placed on the left of all the &, p. The correct 
computational techniques will be discussed later. 

3. Reduction of operators to a generalised normal form 

Define the generalised normal form of spinor field operators as a form where they are 
expressed only in terms of the creation (Z', bt) and annihilation (a, p )  operators, also 
the creation operators it, 6' are placed on the left of the operators a, p. 
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The generalised normal product s(. . .) of the spinor field operators will be called 
the product of these operators reduced to the generalised normal form; the anticom- 
mutators are equal to zero in the process of reduction. The expressions 

&B = A B   AB), A% = T ( A B ) - ~ ~ ( A B )  

are called the generalised pairing and the generalised chronological pairing, respec- 
tively. 

In accordance with the definition, to reduce operators to the generalised normal 
form it is necessary to express all the operators only in terms of a't, dt and a, p. This 
can be done if the general connections between the operators {CY', CY, Pt, p }  and 
{Zt, a', dt, 6) are established. To do so we will use the following. Since the operators 
+(x ) ,  already discussed in connection with (2), satisfy the Dirac equation in the 
external field with the operator initial conditions i , b ( ~ ) l , = ~ ~  = +(x) they may be given in 
the form: 

+b)= I G(x, x M x d d x 1 ,  (9) 

where G(x, x ' )  is the propagator for the Dirac equation in the external field (Dirac 
1937). It satisfies the Dirac equation and the condition G(x, X ' ) ~ ~ O = ~ O ,  = S(x -x'). 
The function G(x, x ' )  may be constructed using any complete and orthonormal system 
of solutions { + k ( X ) }  of the Dirac equation in the usual way: 

G(x, x ' ) = c  ' $ k ( x ) 4 ; ( X f ) .  
k 

The obvious relations Gt(x, x ' ) =  G-'(x, x ' )  = G(x', x )  are valid for this function. It 
should be noted that G(x, x ' )  is the anticommutator of spinor field operators in the 
interaction picture (2). 

From (2) and (9) we find the following relations: 

where t and t' are arbitrary moments of time. By substituting the expansion (4) in the 
right-hand side and the expansion ( 5 )  in the left-hand side of (10) and assuming f' = tl, 
t = t2  we get 

a' = G(+(+)a + G('l-)Pt, dt = G(-~+)cY + G(-l-)pt 
(11) 2 = a t ~ ( + l + ) + p ~ ( - ~ + ) ,  

G(*I*Imn = I * ' $ , ~ ~ ) G ( x z ,  X I ) ~ ' $ ~ ( X I )  d r 2 ,  

G(*l*Inm = I *d(xl)G(xl, ~ 2 ) * 4 ~ ( ~ 2 )  dr1 &z, 

6 = a + ~ ( + ~ - ) +  ~ G ( - I - ) ,  

where 

G(*l*It = G(*I*). 

By substituting the expansion ( 5 )  in the right-hand side and the expansion (4) in 
the left-hand side of (10) and assuming t = tl ,  t '= t2 we obtain the relations inverse to 
(11): 

a = G(+l+)a'+ G(+l-)bt, Pt = G(-l+)a' + G(-l-)bt, 
(12) at = ZtG('l+)+ 6G(-l+), p = ~ ~ ~ ( + l - ) + d ~ ( - l - ) .  
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We now introduce the notation for the relative probability amplitudes of the 
processes which are of zeroth order with respect to the electron-photon interaction as 
follows: 

(13) + -  t t w ( m . .  . s . .  . ~ n . .  . 7 . .  .)=o,t(dlim.. .as.  . . pn . . .a/ . . . IO)~,,C~-~, 

is the probability amplitude for the vacuum to remain the vacuum to zeroth order with 
respect to the electron-photon interaction. The simplest amplitudes, which cor- 
respond to single-particle scattering, annihilation and creation of pairs, are readily 
calculated by direct use of relations (11) and (12) (Bagrov er a1 1975): 

w (h SI 0) = { G- * (+ 1 +)G (+ I -)}ms = -{ G (+ I -)G - (- I -)}W. 

From (11), (12) and (15) we get the following relations: 

Relations (16) allow us to express unambiguously all the spinor field operators as 
functions of the creation (it, a’) and annihilation (a, p )  operators only. We will, for 
example, do this for the operators $ ( x )  and &x).  To do so we substitute the 
expansion (4) in the right-hand side of (9) to find 

where *q!Jn(x)=J G(x, x1 ) *q !J~(x1 )dx~  are the solutions of the Dirac equation in the 
field with the initial conditions given at t = t l .  By using definition (2) and the obvious 
connection $ ( x )  = G(x, XZ)$(XZ) d x ~  and the expansion ( 5 ) ,  we find: 

where * & ( x )  = 5 G(x, xz)*4m(Xz) dxz are the solutions of the Dirac equation in the 
field with the initial conditions given at t = fa. 
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By substituting a t ,  Pt, a’, d from (16) into (17), (18) and into the Dirac conjugate 
expressions we get the necessary form for $ ( x )  and $ ( x ) :  

+ ( x )  = +‘- ’ (x)+ $ ( + ) ( X ) ,  

4% = c ++n ( x  ) a n ,  

+(+)(x) = -+m ( x  

3 ( x )  = p y x ) +  J ( + ) ( X ) ,  

3% ) = c - $n ( x  ) P n ,  

iJ‘+’(x) = 1 ‘&(x)a‘L, 

+lcIn(*)=++n(x)+F w(O/ r$-+l(~:>=C m w(mIn) + m ( X ) ,  

- + m ( x )  = -+m ( x ) - C  w(JmlO)++s(x) = 1 w(hlfi)-+n ( x ) ,  

n n 

m m 

+ + +  

S n 

-Jn ( x )  = -6 ( x  1- w (mlf i> -$m ( x  1, 

+ q m ( x )  = +$5m(x)+c  w ( h s l o ) - & ( x )  = w(hlh)+&(x).  

w ( O ~ E  f)+41(x) = 
1 m 

S n 

Once the spinor field operators have been expressed in the form of functions which 
depend only on Gt, dt, a, p, they can be reduced to generalised normal form by using 
known versions of the commonly used Wick’s theorem. For this purpose it is neces- 
sary to calculate the following anticommutators and generalised pairings: 

[ a n ,  dLI+ = [ P n ,  ELI+ = 0, 

[$e’, $‘-’I+ = [$(+), $(+)I+ = [p, 5(c(+)]+ = [$e), $“’I+ = 0, 

[$ ( - ’ (x ) ,  f j ‘”(X’)]+ = 

‘t 
[an, iL]+ = G ( + I + ) n m ,  [ P n ,  b m ] + =  G ( - I - ) m m  

+ + m ( X ) w ( & / j i ) + c & ( X ’ )  = $ S - ( x ,  x ’ ) ,  
n, m 1 

S - ( x ,  X I ) ,  x o  > XO’, 

xO’ > xo.  i - S + ( X ,  2), 
s ’ ( x ,  X I )  = 
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With the help of these expressions it is not difficult to establish 

1 
+Illn(x) = T 1 3 - k  xdy0 +dn(xl) dr l ,  

2013 

that 

(21) 

(24) 

Green function for Evidently s’(x,  x ’ )  is the generalisation of the Feynman causal 
the case of an arbitrary external field, creating pairs. One can check that F(x,x’) 
satisfies the Dirac equation for the Green function in the external field: 

( @ - m ) S ( x ,  x ’ ) =  - s ( x - x ’ ) ,  9, = ia, - e& ( x ) .  (25) 

Compare the function s’(x,  x ’ )  with the Feynman propagation function in an 
external electromagnetic field Sc(x, x ’ ) .  Note that what we usually understand by the 
Feynman propagation function is the function which satisfies equation (25) and which 
is represented in the form of the formal series (Feynman 1949, Bogolubov and 
Shirkov 1973): 

Sc(x, x ’ )  = S&, x ’ ) - e  So“(x, xl)d(xl)Si(xl, xf)  dxl i 
+e2  S& xl)d(x~)S&l, x~)d(x~)SG(x2, xf)  dxl dx2+. . . (26) 

where S& x ’ )  is the Feynman causal Green function of the free spinor field: 

(m +p*) exp[-ip(x - x ‘ ) ]  
S& x ’ )  = i(OlT$o(x)$(x‘)lO) = d4p. 

+O(X), $ o ( x )  are the operators of the usual interaction picture, and 10) is the vacuum of 
the free particles. 

We obtain the formal expansion of the function s’(x, x ’ )  in a series in powers of the 
external field if we write: 

Ill(x) = SO’(t, t1)Illo(x)So(t, tl) 

where 

Xe is the free electron-positron field Hamiltonian, j g ( x )  is the current operator in the 
interaction picture. Then: 
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relative to the two different vacuums 10). and 18),,,, one may obtain the series (26) for 
s’(x,  x’) with S i ( x ,  x ‘ )  replaced by !%(x, x ’ ) :  

Therefore these formal considerations show that the functions S‘ and s” are different 
for a general case. They coincide deliberately if the vacuum vectors of the initial and 
final states coincide and are those of free particles. Note that in the Schwinger’s 
(1954) well known work the Green function in an external field is considered. Its 
explicit form given in Schwinger (1954) is as follows: 

G(x, XI)= i(OlT+(x)$(x’)lO). (27) 

However, Schwinger noted clearly that he was discussing only fields creating no pairs. 
In this case expressions (20) and (27) do coincide. Detailed consideration of the 
proper time method as applied for obtaining the Green functions in an external field 
(Schwinger 1954) shows that the method contains some ambiguity which disappears as 
far as the external field creating no pairs is concerned. When dealing with the field 
creating pairs it is necessary to use either additional boundary conditions or the 
explicit form of s’, given by expression (20). However, considerable simplifications 
are possible in specific cases. It is obvious, for instance, that the Green function in a 
constant and uniform electric field can be found from the corresponding Green 
function in a constant and uniform magnetic field by means of the substitution H + iE. 
The expression to be obtained can be brought into the form (20) (Nikishov 1969). 

4. Correspondence rules 

It is obviously convenient to represent the S matrix in the generalised normal form for 
the calculations of matrix elements (7) from the S matrix (the generalised normal form 
of the electromagnetic field operators coincides with their usual normal form). This 
can be done with the help of Wick’s theorem for the T products, where the normal 
products and chronological pairings are replaced by their generalised analogues. It is 
useful first to represent the current operator in the generalised normal form: 

i” (x) = e f l J ( x  ) y W x  +.Y (x 1, 
(28) 

I”(x)=out(61i’(X)10)in=~ie Tr ~ ” ( S ’ ( X  +0, x ) + ~ ” ( x ,  x +O)). 

Thus the problem is reduced to the calculation of the matrix elements of the 
generalised normal products: 

0 .  t f t out(Olam. . .6’, . . . c ~ . .  . fi(. . . ) c x u . .  . pn. .  . a1 . . 
Evidently this matrix element is non-zero if the sum of the number of particles for 

each field at the initial and final states is greater than or equal to the number of 
operator functions of the given field in the generalised normal product. 

Consider the case when for each field operator +(x),&x),  d u ( x )  from the general- 
ised normal product one can find the corresponding operator a t ,  Pt, ct  from the 
initial state, or a‘, b: c from the final state, which will cancel it as the result of 
commutation. Such a matrix element will be presented by means of Feynman 
diagrams with the following, partly modified, correspondence rules. 
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(i) The factor +$,,(X)(+&,(X))  in the matrix element, defined by the expressions 
(21) ((24)), corresponds to the electron with the quantum number n (m) at the initial 
(final) state. 

(ii) The factor -$, , (x)(-&(x))  in the matrix element, defined by the expressions 
(23) ((22)), corresponds to the positron with the quantum number n (m) at the initial 
(final) state. 

(iii) The pairing i-lsc(x,x'), defined by expression (20), corresponds to the 
internal electron lines, directed from the point x '  to the point x .  

(iv) The c-number current .$(x), defined by expression (28), corresponds to the 
closed electron lines. 

(v) The contribution from any diagram contains as a factor the probability ampli- 
tude of the vacuum remaining the vacuum C,. 

The rest of the correspondence rules remain unchanged for this case (Bogolubov 
and Shirkov 1973). 

Now consider the case when the number of the spinor operators at the initial and 
final states is greater than that which is necessary for the compensation of the 
generalised normal product. This matrix element is equal to the products of the 
contributions coming from the Feynman diagrams and the factors 
w(m . . . s .  . . In. . . 1 . . .). The Feynman contributions arise due to the 'interaction' of 
the generalised normal product with the operators of the initial and final states. The w 
come from the non-compensated operators of the creation and annihilation of these 
states. The contributions of the Feynman diagrams are calculated with the use of the 
modifications listed above. The method of computation of the amplitudes 
w(h.. . S.. . 1;. . . r . .  .) is discussed in § 5 .  

+ -  + -  

5. Relative probability amplitudes for zeroth-order processes 

Relative probability amplitudes for processes which are of zeroth order in the elec- 
tron-photon - interaction (13) are readily calculated if the product 
a', , . . b,. . . P , , . .  , a! . . . of the operators is reduced to the generalised normal form 
with the help of Wick's theorem and the pairings (19). Evidently, since 
out(61fi(. . 0, the matrix element (13) is equal to the sum of all the possible 
pairings of the operators a', . . ,6,. . . P , , . .  .a,?. . . without the fi-products, i.e. it is 
expressed according to (19) only in terms of the sum of the products of the amplitudes 
for the processes of scattering, annihilation and creation of pairs taken with the 
corresponding signs, determined according to Wick's theorem. For example, the 
probability ampiitude for electron scattering accompanied by the creation of a pair is 
expressed as follows: 

t t 

t 

w (rit s'l;lA) = w ( S'KlO) w (&I&) - w (&;210) w ( $16). 
As we have already seen in 0 4 the contribution of any diagram contains as a factor 

the probability amplitude for the vacuum to remain the vacuum (14). We will now 
discuss reasons enabling us to determine this quantity using the initial constructions, i.e. 
the propagator G(x, x ' )  and the spinors of the initial and final states. 

In the assumptions, discussed in appendix 3, a unitary operator V exists such that 
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Evidently from (14) and (19) it follows that Cv is the expectation value of the operator 
V calculated over the vacuum 10)in: 

Cv = in(Ol VlO)in. (30) 

The operator V can be determined from the relations (11) by substituting {it, a', 6', 6) 
in them according to (29). Using the known formula 

it is easy to show that it is always possible to satisfy these relations by choosing V in 
the following form: 

V = exp(a 'Aa + a 'Bp  + pCa + pDp t). (32) 

By such a choice of V one can ensure its unitarity in an uncontradictory way. Further, 
oce can verify that the set of commutators of the four quadratic forms atAa,  atBPt, 
PCa, PDPt generates the set of quadratic forms of the same type, i.e. with the 
analogous arrangement of creation and annihilation operators. In this case it is always 
possible to find matrices A, 8, e, fi so that the expression (32) can be rewritten in the 
form: 

v = exp(at8pt)  exp(atAa)  exp(pfip') exp(p&). (33) 

One may verify this by using the known expansions of the operator exponentials 
(Kirzhnitz 1963). The explicit forms of the matrices A, 8, e, fi can be found by 
substituting (33) in (29), (11) and using the formula (31). For instance, the required 
matrix is connected with the matrix G(-l-) by the relation G ( - / - ) =  exp(6).  

Substituting (33) in (30) one gets 

C, = exp(Tr In G(-l-)= det G(-l-). (34) 

The derivation of formula (34) which we have presented is not the only one 
possible. For example, S P Gavrilov noted that it is possible to arrive at the same 
conclusion by using a combinatoric method. 

6. Conclusions 

The results of this work allow us to use known methods of perturbation theory and 
diagrammatic techniques with little modification to consider processes in an arbitrary 
electromagnetic field creating pairs. The modifications are reduced merely to some 
new definitions of all the electron lines, both internal and external. It should be noted 
that the causal Green functions, corresponding to the internal lines, have different 
forms for problems with different sets of initial and final states. Actually they 'feel' the 
vacuum states of the initial and final particles. 

Note that the method suggested can be useful for the consideration of quantum 
processes in external gravitational fields where, in the general case, the vacuum 
vectors of the initial and final states are different. 
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Appendix 1 

The problem of the choice of initial and final states in theories with external elec- 
tromagnetic or gravitational fields has no general solution yet. This problem is 
obviously associated with the definition of the vacuum in an external field. We think 
that there is the following possible approach to the solution of the problem. 

The vector minimising the mean value of the Hamiltonian X(r )  at the given 
moment of time t will be called the vacuum vector IO), at the moment of time t ;  

,(ol%(t)lo), = minimum value. (A.1) 

% ( r ) l , y n ) t  = E, (t)Ixn ), 

In connection with that stated above we consider the eigenvalue problem 

(A.2) 

where t is a parameter. If the spectrum E,(t) is bounded from below and Eo(t)  is the 
smallest value, then it is not difficult to see that I,yo), is the solution of the functional 
equation (A.2) and, therefore, it could be called the vacuum vector at the moment of 
time t. Obviously En(t) gives the possible values of energy of the system at the 
moment of time t, and [,yn)( is the state with the given energy at the moment of time t. 
The vacuum remains if lxo), at any moment of time coincides to within the phase 
factor with U(t,  tl)lxO)rl, where U(t, t’) is the evolution operator of the total system. 

Practically, the exact solution of the problem (A.2) is not possible. In a strong 
external field it is reasonable to consider the approximate problem with the Hamil- 
tonian Z o ( t )  (see (1)). The solution of the latter problem is possible if the eigenvalue 
problem for the Dirac Hamiltonian in an external field is solved: 

In addition, the following conditions must be valid: 
(a )  8:’>0, 8:-’< 0 and there is a gap between positive and negative levels. 
(6) Spinors {&(x, l ) }  at the given moment of time t satisfy the orthogonality and 

(c) The condition 
completeness conditions (6). 

is valid, where {&;(x)} are the solutions of equation (A.3) in the absence of the 
external field. 

Indeed, by using condition (6) and the expansion of the type (4), one can introduce 
the operators of creation and annihilation of particles { a ~ ( t ) ,  a,(t)} and antiparticles 
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{Pi( t ) ,  Pn(t )} .  By using condition ( a )  it is not difficult to obtain the following form of 
the operator Xo(t): 

where C(t )  is a constant, not an operator. Thus the vacuum vector IO), is the solution 
of the equation 

This equation has a solution in the original Hilbert space, if the operators 
{a&), an(t), P&), Pn(t)}  are unitary equivalent to any operators of creation and 
annihilation for which there is a vacuum vector in the space concerned (Fridrichs 
1953). 

Let us choose, for instance, these operators to be the free particle operators 
{ait, a:, bit ,  b i } ,  generated by the set of spinors {k+;(x)}. By comparing the expan- 
sion of the operator @(x) in spinors {*&(x, t)} with the expansion in spinors {*@i(x)} we 
find: 

BnA = 1 ( @ n h . l r d w y + * n A , ~ ~ ~ : y ) ,  A ,  y = * l  (A.6) 
P. Y 

where 
0 0 

B n + = a n ,  &-=Pm A,+ = a,, A,- = b,, 

a n + , p +  = (++n, ++E), 
*n+,w+ = q n - , p -  = 0, 

an+,@- = an--,@+ = 0, 

* n + , p -  = (+h, -114, 
an-,,- = (-A, -@3*, 
* n - , p +  = (-4n, ++:I** 

It is evident that the canonical transformation (A.6) is a linear transformation. A 
theorem exists (Berezin 1965, Kiperman 1970), which holds for the linear canonical 
transformation of Fermi creation and annihilation operators. In accordance with this 
theorem, (A.6) is a proper transformation (i.e. at(?), a(f), Pt( t ) ,  P ( t )  and a'+, a', bot, 
bo are unitary equivalent) if W is the Hilbert-Schmidt operator. With our notation we 
arrive at condition (c). 

The excited states I,yn>, can be constructed in the usual way with respect to the 
vacuum IO), and to the corresponding creation and annihilation operators. 

Appendix 2 

Consider the problem of unitarity of the electron-positron field evolution operator 
Uo(t2, t i )  in an external electromagnetic field. This problem is uniquely connected 
with the problem of showing that the canonical transformation (1 1) of the operators 
{at, CY, Pt, P }  to the operators {Z', a', 6', d} is the proper transformation. Indeed, 
conditions (A.4), assumed for the spinors of the initial and final states, ensure the 
unitary equivalency of the operators {at, a, Pt, p }  and {at ,  a, bt, 6 ) .  Therefore, from 
definitions (8) it follows that if Uo(tz, t l )  is the unitary operator, then there is an 
operator V, such that 
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and consequently the transformation (1 1) is the proper transformation. The reverse is 
also evident. 

Let us investigate whether (11) is the proper transformation according to the 
theorems suggested by Berezin (1965) and Kiperman (1970), as it is done in appendix 
1. Taking into account properties of matrices G(+l-) and G(-l+), defined earlier, we 
obtain the corresponding criterion 

Tr{G(+l-)G(-l+)+ G(-I+)G(+I-)} < CO. (A.8) 
We will show that the left-hand side of the inequality represents the total number of 
particles created by the field during the period of time (t2 - tl). To do this we calculate 
probabilities of electron creation at the given quantum state w(h), and positron 
creation at the given quantum state w( i ) ,  using the formulae (11) and assuming that 
U O ( ~ Z ,  t l )  is the unitary operator: 

= in(0l UCl(t2, tI)bdbsUO(tz, tl)Io>in = {G(-I+)G(+I-)}ss* (A.lO) 

According to the Pauli principle expressions (A.9) and (A. 10) are also the mean 
numbers of electrons and positrons created at the given quantum state. Thus the total 
numbers of electrons w(+) and positrons w(-) created during the period of time 
( t 2  - tl)  are equal to, respectively: 

w(+) =Tr G(+l-)G(-l+), w(-) = Tr G(-l+)G(+l-), 
and the left-hand side of (A.8) really represents the total number of particles created. 
(It is possible to verify that w(+)= w(-), so the law of conservation of charge is valid 
for this case.) 

Thus we have proved that if UO(t2, tl) is the unitary operator, then the total 
number of particles created is not equal to infinity. 

On the other hand, it is evident that this number is always the same for a system 
with a finite volume "y. during the finite time interval ( t2- t l ) .  If the external elec- 
tromagnetic field is such that at "y. -* 00, or at (t2 - t ~ )  + 03, it creates an infinite number 
of pairs (for instance, the constant electric field), then according to the above dis- 
cussion the evolution operator UO(t2, tl)  is not the unitary operator. 

It should be noted that the unitarity of the operator Uo(t2, t l )  has been proved by 
Schwinger (1954) and Nikishov (1974). However, the problem of the conservation of 
unitarity at V +  CO, tz - tl + 03, has not been investigated. 

Appendix 3 
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Evidently, if we choose * ~ $ ~ ( x ) =  *C$m(x, f2 ) ,  then a = a', /3 = d and the matrix element 
(7) could be considered by the usual techniques, based on the reduction of the S 
matrix to the normal form relative to the vacuum However, as has been shown in 
appendix 1, the spinors {*C$m(x)} must satisfy condition (A.4). It is not difficult to 
guess that any system of spinors {*&,(x)} could be chosen deliberately to satisfy the 
requirements of (A.4). Let us choose {*4m(x)} as such a system. Then, for the system 
*&(x) = *c#J~(x, t2) ,  condition (A.4) has the form of (AA) and is the condition for the 
finiteness of the total number of pairs created by the field. Obviously, condition (A.8) 
is not realised if, at V + m ,  the total number of particles created approaches infinity 
(this must be the case for the model of an external field having an infinite energy in the 
whole space). Consequently, for the field which creates pairs in the whole space, it is 
not possible to make such a choice for the final states (i.e. so that a = a', p = 6). This 
means that the usual techniques must be generalised. 
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